Friedreich's ataxia. Revision of the phenotype according to molecular genetics.

نویسندگان

  • L Schöls
  • G Amoiridis
  • H Przuntek
  • G Frank
  • J T Epplen
  • C Epplen
چکیده

Friedreich's ataxia is an autosomal recessively inherited neurodegenerative disorder caused by expansions of an unstable GAA trinucleotide repeat in the STM7/X25 gene on chromosome 9q. We studied the (GAA)n polymorphism in 178 healthy controls and 102 patients with idiopathic ataxia. The repeat size ranged from 7 to 29 (GAA)n motifs on normal chromosomes and from 66 to 1360 trinucleotide repetitions in Friedreich's ataxia patients. Meiotic instability of expanded alleles was observed without significant differences in maternal and paternal transmissions. Thirty-six of 102 patients were typed homozygous for expanded (GAA)n alleles. Twenty-seven of these presented with the typical Friedreich's ataxia symptoms and nine patients with an atypical Friedreich's ataxia phenotype. Before molecular genetic diagnosis had been performed seven of these patients had been classified as early onset cerebellar ataxia and two as idiopathic sporadic cerebellar ataxia of late onset. In contrast, in one family with typical Friedreich's ataxia phenotype we did not find an expanded allele; this suggests that there can be either point mutations in the X25 gene on both chromosomes or locus heterogeneity in Friedreich's ataxia. The phenotypic spectrum of Friedreich's ataxia is much broader than considered before. Early onset, areflexia, extensor plantar responses and reduced vibration sense should no longer be considered essential diagnostic criteria of Friedreich's ataxia. In comparison with the non-Friedreich's ataxia group hypertrophic cardiomyopathy seems to be the only symptom specific for Friedreich's ataxia. However, it is not obligatory. The phenotype is significantly influenced by the number of GAA repeats with close genotype-phenotype relationships when the smaller of the two alleles is considered. Repeat length correlated inversely with age at onset, onset of dysarthria and progression rate. In conclusion, molecular genetic analysis appears mandatory for the diagnosis and genetic counselling of Friedreich's ataxia. The molecular genetic test should be applied not only to patients with typical Friedreich's ataxia phenotype but also in all cases of idiopathic autosomal recessive or sporadic ataxia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A TAT-frataxin fusion protein increases lifespan and cardiac function in a conditional Friedreich's ataxia mouse model.

Friedreich's ataxia (FRDA) is the most common inherited human ataxia and results from a deficiency of the mitochondrial protein, frataxin (FXN), which is encoded in the nucleus. This deficiency is associated with an iron-sulfur (Fe-S) cluster enzyme deficit leading to progressive ataxia and a frequently fatal cardiomyopathy. There is no cure. To determine whether exogenous replacement of the mi...

متن کامل

Novel Missense Mitochondrial ND4L Gene Mutations in Friedreich's Ataxia

Objective(s) The mitochondrial defects in Friedreich's ataxia have been reported in many researches. Mitochondrial DNA is one of the candidates for defects in mitochondrion, and complex I is the first and one of the largest catalytic complexes of oxidative phosphorylation (OXPHOS) system. Materials and Methods We searched the mitochondrial ND4L gene for mutations by TTGE and sequencing on 30...

متن کامل

'Pseudo-dominant' inheritance in Friedreich's ataxia.

A family is described in which Friedreich's ataxia occurred in two generations. It is proposed that this resulted from a homozygote-heterozygote mating. The heterozygote frequency for the Friedreich's ataxia gene is in the order of 1 in 110, so the likelihood of the disease developing in an individual child of a patient is 1 in 220. This risk is probably higher than that often assumed when coun...

متن کامل

Friedreich's ataxia reveals a mechanism for coordinate regulation of oxidative metabolism via feedback inhibition of the SIRT3 deacetylase.

Friedreich's ataxia (FRDA) is the most common inherited human ataxia and is caused by a deficiency in the mitochondrial protein frataxin. Clinically, patients suffer from progressive spinocerebellar degeneration, diabetes and a fatal cardiomyopathy, associated with mitochondrial respiratory chain defects. Recent findings have shown that lysine acetylation regulates mitochondrial function and in...

متن کامل

Cis-silencing of PIP5K1B evidenced in Friedreich's ataxia patient cells results in cytoskeleton anomalies.

Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease characterized by ataxia, variously associating heart disease, diabetes mellitus and/or glucose intolerance. It results from intronic expansion of GAA triplet repeats at the FXN locus. Homozygous expansions cause silencing of the FXN gene and subsequent decreased expression of the encoded mitochondrial frataxin. Detailed analy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain : a journal of neurology

دوره 120 ( Pt 12)  شماره 

صفحات  -

تاریخ انتشار 1997